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Abstract

We consider the problem of placing a specified number p of facilities on the nodes

of a given network with two nonnegative edge-weight functions so as to minimize the

diameter of the placement with resp~t to the first distance function under diameter-

or sum-constraints with respect to the second weight function.

Define an (a, /3)-approximation algorithm u a polynomial-time algorithm that

produces a solution within a times the optimal function value, violating the constraint

with respect to the second distance function by a factor of at most $.

We observe that in general obtaining an (a, $)-approximation for any fixed a, /j z 1

is ~P-hard for any of these problems. We present efficient approximation algorithms

for the me, when both edg-weight functions obey the triangle inequality.

For the problem of minimizing the diameter under a diameter constraint with rc+

spect to the second weight-function, we provide a (2, 2)-approxinlation algorithm. We

also show that no polynomial time algorithm can provide an (a, 2- c)- or (2 – E, /J)-

approximation for any fixed @ > 0 and m, 1~ z 1, unless P = AfP. This result is

provml to remain true, mwn if one fixes d >0 and allows the algorithm to place only

2p/l Vll@c’ facilities.

Our techniques can be extended to the case, when Pither th~ objective or the con-

~traint is of sum-type and sko to bandl~ additional weights on th~ nodes of the graph.
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Here cm heuristics provide performance guarantees of (2 - 2/p, 2) and (2,2 - 2/p)

respectively.

Keywords: Approximation algorithms, Bicriteria problems, Network design, Location The

ory and Combinatorial algorithms.
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1 Introduction and

Several fundamental problem in

Basic Definitions

kJcatiitha)ry can be Inodeled az finding a pkeluent

obeying certain covering constraint. The god in ouch location theory prokkms iz unudly to

minimize a certain meaaure of ccwt awociated with the phcemen t. The coot may rekt the

price of placing the network, or it may reflect the muimum communication at between

the two facilities. Exampl- of ouch ccwt measurea are the total edge amt and the diameter

mpctively. Cmmider for instance a computational task consisting of a number of oomrMl-

nicating subtaaks. At a givtm time, me of the procewrs m~ be already abated and the

remainicg p~ are available. The problem is to Act a d-set of proc=m m from the

currently available prmxmmrs , one per eubtask, such that the coat of communication among

the processo m executing the subtaske is minimized,ln this application, the procmmms must

be allocated quickly, and this may ccdict with the god of minimum communication cost

among the selected processo rs. Compact location prdkrns dm arise in a number of other

applications such M allocation of manufacturing sites fol the components of a system so aa to

minimize the cost of transporting components, distributing the activiti= of a project among

geographically disperswd offices so as to minimize the transportation and cmnmunicaticn

costs among the &cm, etc.

Finding a plac=ment of facilities of sufficient generality minimizing even one of these measures

is often AfP-hard [GJ79]. Moreover, in applications that arise in red-life situations, it is

often the case that the network to be built i~ required to minimize more thau one cost

nwasum simultaueoudy. In this paper, we consider bicriteria problems motivated by practirxd

inatancm arising in the location theory.

The problems we consider in this paper can be termed aa Compact Location problems; since
we will typically be interested in finding a ‘compactm placement of faciliti~. Cousider, tlw

problem of placing a specified number p of facilities on the nodes of a given complete network

6’ = (V, f%) so as to minimize some mwisure of the distances betwem the facilities. This

proldem !ms hen studied for both diameter and sum objectivtw (LW e.g. [RKM+93]). The

problems have applications in statistid clustering, patteru recognition, promasor allocation

and load-balancing.

III this paper we consider extensions of theue problems, where wa are given MO weight-

functiona 6,, dd on the edgen of the network. The firstof the functions, 6,, will represent the

cost of constructing an edge, while the second one, 6d utands for the actual transportation-

ur coll~ll~unicatioll-rmt over an edge (ouce it has hem constructed).

A geueral bicriteria problem, (4, B), in defined by idmtifying two minimization ohjectiww

of intcrtwt from a A of pcmsibl~ objectives. The problem ripecifies a lmdget vahw on tlw

tir~t objective, A, tmd seekn to find a network having minimum possiblti value for the woml
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objective, 1?, such that this solution obeys the budget on the first objective. An (a, ~)- ..

approximation algorithm is defined as a polynomial-time algorithm that prochmm a solution

in which the first objective value is at most CRtimes the budget, and the secand objective

value is at most #l times the minimum for any solutiou obeying the budget on the first objec-

tive. As an example, consider the following diarnetcr-boumfr.. minimum diameter prvblem or

(Diameter, Total cost) bicriteria problem: given an undirected graph G“= (V, E) with two

different integral nonnegative weights ~e (modeling the cost) and g. (modeling the delay) for

each edge e E E, a integer p denoting the number of facilities to be placed and an integral

bound B (on the total delay), find a placement of p faciliti~ with minimum diameter under

the f-cost such that the diameter of tbe pkemeut under +-heg-crests (the maximum delay

betwem any pair of nodes) is at most B.

Let c = (V, l,) be a complete undirected graph with n := IVI nodes and let 2 C p < n be—
the number of facilities to be placed. We call a subset P ~ V of c.ardinality p a placcmrvd.

[liven a nonnegative weight-or cost-function 6: Ec ~ Q+, we will v:e D6( P) to denote the

diarnctcr of a placement P with respect to 6, that is

Similarly, we will let S6( P) stand for the sum of k distanms between faciliti- in the

placement P, i.e.

SJ(P) = ~ 6( U, U).
U,UEP

U*S

Wti note that the average. length of an edge in a placenmnt P equals ‘Sb(f’).

AtI usual, WF say that a nmmegati we distance 6 on tlm edgw.s of L’ satisfies the friangk

imquality, if we have

6(U, w) < J(v,u) + 6(U, w)

for all v,w, u E V.

The Minimum f)iamdcr Pfacrmcnt Probfcm, or MDFIfor short, is to find a placemeut of

minimum diameter. Similarly, for the Minimum Avcragc Plammcnt Problem, also denoted

MAP, one wants to find a placement P such that & is minimized. Both problems ar~

known to be J@-hard, even when th~ distance J obeys the triangle inequality ([K.KM+93]).

Moreover, if the distances are not required to satisfy the triangle inequality, then tlwrt= can

be. no polynomial time relative approximation algorithm for MDP or MAI] unless T’ = ~’P.

In the sequel we will restrict ourselves tu those int.&u~ces of the problfims, whert: tlw w~igllts

on the edges obey the triangle inequality. Civen a prd]!em PROEI,wv will use ~Roti -T] to

A-wok the currtwpumiing NullNet of illstmlces, where the triangle ineql~ality i~ satisfi(vl.



We will be mainly concernmi with problems, where the objective is to miuiuize either the

diameter, although our results can be extended to sum objectiv= as well, aa we will indicate

briefly in the last section. The constraints

either of sum or diameter type.

A constraint with re+ect to 6= of the form

&C(~) ~ ~

will be called budget condmid. Here, we

with respect to the semnd weight function are

or ~&(~) s ~

are given a budget 0 and the aim is to find a

best-possible pmxrrwnt P that does not involve total building costs of more than fl (if we

consider the sum &c ( P)) or that d- not involve a maximum building coat of an edge of

more than Q (in the case that we look at D6C) respective.!y.

simi]~ly, we cd a diameter or sum constraint with rqxxt to 6d a Comrnunicathn CO?Ldmini.

Here, we faa the problem of finding a plamment, which is as cheap as possible and where

we want to have control over the diameter or sum of the fllstances.

Assume that we are given the problem of finding a placement P of p nodes, minimizing

M(P) subject t~ the mmstraint

M’(P) < n, (1)

where the constraint ( I ) is either of budget or communicatim type, and Al stands for

eitiwr the sum of the distances or the diameter of the placement with respect to %IIt=second

weight function. Then we define an (a, fl) –apprwm”rnation algorithm to be a polynomial-t imt=

algcrit hm, which for any inst ante 1 does one of the following:

(a) It producm a solu~ion within a times the optimal function value, violating the con-

straint with respect to thti second distance function by a factor of at most (j

(b) I returns the information that no feasible placement exists at all.

Notice that, if there is no fessible placement but a plamment violating the constraint by a

factor of at most b, an (n, (ii)-approximation algorithm lHMthe choice of performing either

actiou (a) or (b).

Following [HS86], the 6ottlmMck gmph bottleneck(G’, b, A) of G = (V, J!Z) with rmpe~t to A

and a bound A is defined by

lmttlen~rk(G,6, A) := (V, E’), where E’ := {e E E, : fi(c) 5 A}.



2 Related Work

2.1 Mni.dz ;ing one cost measure

In contrast to the A@bardn- results contained in %ticm 1, which hold for general dis-

tanoe matri-, geometric vcmiono of MDP and MVP were shown to be aolvablc in polynomial

time in [AIKS91]. b the gcmmetric versions of thew problems, the n~~ are points in sp.am

and the distance bet=n a pair of neck is their EuclidaBo distance. For pohltz in the

plane, [AI KS91] contains an O(p% log p + n log n) algorithm for the MDP prob!em and

an O&n log n) algorithm for the MVP problem, and it is observed that tbe algorithms

extend to higher dimensions. Thew algorithms are baMXI on the construction of ~~ order

Vorcmoi diagrams [Lee&2, PS65].

Other work has add- placement problems where the nbjective functions are different

from the above. For example. the tradition facility location problems are concemxl with

minimizing the maximum distance from a node to a nearest facility (pCenter problem)

or minimizing the sum of the rlistancm from each node to the nearest facility (pmedian

problem) [HM79, M F90]. i~xvever, for the problems considered in thi~ paper, the objtwti ve

fuuc.tions involve only the di~;ances between facilities. Similarly, the clustering problems

cxmsidmed in the literature [1-!Si+6, FG88, Gon&5] involve partitioning the given set of nodes

iuto clusters so as to minimize a given objective function. The location pmblenls mmsider~

in this paper are of a differeut flavor since the objective functions involve only a subset of

nodm. Facility Lwation problems where the objective is to place facilitim so as to mum.mizr

some function of the distances betwmm facilities have b~n considered in thf literatu~; sm+

for tixample [EN69, RRT91]. Problems in which the phwement of faciliti~ is not restricted to

the nodes oft he network have also been studied [MF90]. We consider only lw.at ion problelns

in which the facilities are placed at the nod= of the uetwork.

Hochbaum and Shmoys [HS86] and Dyer and Frieze [DF8.5] cousider the node weighttid

versio:ls of center problem. Location problem~ with other optimizing criteria have also betm

considered in the literature. Lin and Vitter [LV92] provide approximation~ for the s-median

problem where s median uodea must be chmen so as to minimize the w,un of the distanrw

from each node to its uearest mdian, The solution method is qproximate in terms of both

the number of rnedian-nodm used and the sum of the distance from exh node to the nrarwt

mediau. Bar-IIan and Peleg [BIP!30] Consider the balanced center problem. They provide

approximate ion algorithms for problem of allocating network centers wherein t:ach rpntt?r is

allowed to service only a hounded number of nodm.
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. 2.2 Bicriteria approximations

While there hss beeII much work oc finding minimum-cost ne!,works for c-h of the cost me-

SUIW that we simultamxmsly minimwe, them has been relatively little work on approximat-

ions for multi-objective network-ales@. lo this direction, Bar-IIan, Kortsarz and and Peleg

[BIPSO] considered balanced versions of the problem of assigning network centers, where a

bound is imposed on the number of nodes that any center cau service They extended mr.ist-

ing approximation algorithms for center problems to the balanced versions. Wong [WOU80]

examined a budget network design problem in which a network is to be built whose c-t

is at most a certain budget such that the sum of the path-lengths of commoditi- to be

routed using this ❑etwork is minimized. He showed that even finding near-optimal solutions

is N?–hard if we are required to confoml to the budget requirement and approximate only

the sum of path-len<gtbs. Lin and Vitter [LV92] provided approximations for the s-median

problem where s median nodes must be chosen so as to minimize th~? sum of the distauc=

from each vertex to its nearest median. The solution output is approximate in terms of

both the number of median-nodes used and the sum of the distaums from each vertex to

the uearest mediau. Iwainsky et al. [1(~TV86] formulatd a version of the miuimum+mst

Steimm problem with an additional cost based on nod-degr-. Giveu crests aud Ieugths ou

the edges of an undirected graph, Warburton [War87] presented a fully polynomial apl;rox-

imat ion scheme (FPAS) for &he problem of constructing a path ot’ shortest length bet w-n

two spc.cified nodes subject to a given constraint on the cost of the path. Hssisin [HasW]

~ resented a faster FPAS for the same problem.

other researchers have addressed multi-objw.tive approximation algorithms for problems

arising in areas other than network design. This includ= rmexmch in the arew of conlputa-

tional geometry [AFM P94], numerical analysis, network desigu [A BF’90, K RY93, Fis93] and
scheduling [ST93].

3 Finding Placements with Small Diameter Under Con-

straints

First we will c.ousider the problem,

struction cost of an edge subject to

where the objective is to minimize the maximum con-

comnmuication constraints of bottleneck type.

Definition 3.1 (M~P with Bottleneck Constraints (Mc)PM~))

e An undircctwl (*ornplctc graph G = (V, E.) with two nonncgativr wright functions

&, i$~: i?= h Q+, ark intr.qm 2 S p < ~~al~d a l~umb~r ~ E Q+.



Output: A A P G V, 1P! = p, minimizing the objdiwe

subject to the cxnwtmint

TIIe intwpretat iou of the

D&(P) = y=% q% w)
●#9

z&(P) = ywyp qu, w) < n
●*W

model is as follows: We have a measum Q of what we want to have

a “guaranteed rqxmse time” between two facilities. Now tbe goal is b find a placement

mbject to that constraint miuimiziug tbe maximum building cust of a link.

!f one is given an instanc~ 1 of MDPM-Tl, tbe first question that arisa is, wbetber tbme
is any feasible placemeut, i.e. whether there exists a placement P satisfying the constraint

D6d(~) < ~. Unfortunately, this question turns out to he bard

have tbe following stronger hardness result:

Proposition 3.2 Ld E >0 and c’ >0 k u.rbitmry. .$upposc

(cf. [RKM+93]). Indeed, we

that A is a polynomial time

algorithm that, given any iwqtancc of MDP&lt -Tl, cithtv- rrturn.s a subsrt .S ~ V oj at lca~t

+( nodex satisfying V64(,$) < (2 – &)Q, or pmvidm the injomation that no placcmcnt

of p nodes having communication dianwtw oj al most fl dots tzist. Then P = A@.

ProoE See the appendix. ❑

We can swap tbe rolm of ~: and 6~t in tbe proof of tbe !ast proposition to show that tbfi

optimal value of the problem can not be approximated by a factor of (2 – e). Moreover,

replacing 2 by a suitable function ~ E f3(2P01Y[lvll),which given an input !ength of Q( IV!) is

polynomial time computable, it is easy to see that, if the triangle inequality is not required to

11oM,tht:re can be no polynomial time. approximation with performance ratio 0(2P01Y(IVII)for

neither the optimal function value nor t be constraint (modulo P = AfP). Thus we obtain:

Lemma 3.3 (Jnkss P = AfP, for any jimd c >0 and e’ >0 there can bc no polynomial

timr approximation algorithm for MDPktt–T1 that is required to p!acc at lcaqt 2p/IV 1116-”

jaciktics and haq a pcrjomnanm guamntm oj(a, 2 –e) or (2 – e, /3). If the tnanglr inequality

is not rrquimd to hozd, then the e.ristcnm of an (j(l Vi), g( IVi))–appmzimation algorithm for

any j, g ● (2(2P0’Y(IVI)) implies that P = NP.

We now present a heuristic Heur-MDP-MAPkll with a (2, 2)-perfornlance guarantee. In the

senm of lemma 3.3, this is the best approximation we can expect to obtain in polynomial

time. The heuristic is quite simple. The details of the algorithm a-e shown in Figure 1.
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PRCK!EDUREHwPMDP-MAPM(&l)

1

2

3

4

5

6

7

6“ := b9ttlend(G, 6~, 0)

V=~:={uc6U: d4u)2p-1}

IF V.~ = O THEN RENJRN ‘certificate of failure”

Let bed := +W

IA & := o

Fon each u E V=~ Do

(a) Let ~(U) be the *t of p - 1 nearmt ❑eighbors of u in G’with rmpect to&

(b) k?t ~(V):= ~(U) U {U}

(c) IF Af~,(P(u)) c bst THEN IL,:= P(u)
bat := M~c(F’(u))

OUTPUT &.~

F&ure 1: Details of the heuristic for MDPM and MAPM
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Th-rem ~.4 Let J k any instance of of MDPM-TI such thut an qtimgl sofufion P of .

md diameter OPT(I) = OS=(P) esista. l%m k a&$thm Hcur-MDP-UAPti, caffcd

with Mad .--- DSd, rrtutw a pfammra.t P satisfing Z%JP) <20 ad D&( P)/OPT(l) <2.

Proofi .% the appmdix. o

We now turn to the case, when he objective is to minimise the dktaxe diameter Ds, subject

to budget~nstraints of sum type. Here, we want to find a placement, that is iM “compact

as possible~, while the total construction ats of all the edges bet- the f~iliti~ in the

placement do not exced a given budget fl.

Definition 3.5 (MDP with Sum-Budget-Constraints (MDP_))

w An undirwhd compktr gmph C = (V, E.) with two nomqatiur might jketiou
t$t,t$~: Et + Q+, an intrgrr 2< p s n and a number fl E & .

Output: A sd P ~ V, IPI = p minimizing ihc ohjwtiwe

and sati~jying the budgrt–ronstmint

Again, it is not an easy task to find a placement P satisfying the. budget-constraint or

providing the information that there is no such placement respectively. Using a reduction

from CLIQUEone obtaius:

proposition 3.6 fj the distance.q 6,, 6d am not required to .:atisfi the triangle inequality,

there can br no polynomial time (cr, $) -appmzimation algorithm jor MDF,M,Mfor any Jizcd

a,p 2 1, Ulksp = A/P. Moreoucr, if thre is a polynomial time (o, 1)-appmzimation

algorithm for MDP,U,,, – T/ for any jizcd a ~ 1, then P = NP.

TIIe details of the proof are deferred to the appendix. We procd to present a heuristic for

MDPW,. -T1. The main procedure shown in Figure 2 uses the test procedure from Figurfi 3.

We have the following simple

Lemma 3.7 Assume / is GIL instance of MDFD,U,,,–T1 such than there is an optimal placc-

mcnt P“. If k t~d p~t?dum t~t(G’i,6,,Q) ~tu~&q a %rtikcatc Of Jaizum’, thr.n wc hauc

(~[’~(~) > 6d(e; ).



PRC ~EDUltE Hw-Gawic

1 Sort tbe alp of G iu ~cling order with -pect to /1~

2 Aeaume now that &(el) ~ 6,(e~) < =”● s &(e(:))

3 Let&@:= ‘Certilhte of failure”

4i:=l

5 Do

(a) C, := bottklt%k({;, 6~, ~~(e,))

(b) &i := t*(C,, 6CI(;I*~)

(c) i :=t+l

6 UNTIL &t # ‘certificate of failure”

7 OUTPUT &l

Figure 2: Generic bottleneck procedure
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PMXEDURE test(G, 6, 0)

1

2

3

4

5

6

V4:={u~G:deg(v) ~p-1}

IF V_d = i! THEN RETURN ‘certificate of failure”

Let lh?st := +al

Let&:=@

FOR t41 u c Vmd Do

(a) Let N(v) be the set of p – 1 uearest neighbors of v in G with respect *m6

(b) Let f(U) := ~(U) U {u}

(c) IF SS(P(U)) < kd THEN &~ := f(v)

best := S6(P(V))

IF IWS1> (2 - 2/p)Q THEN RETURN‘certificate of failure”

ELSE RETURN fbc,t

Figure 3: Test Procedure used for Heur-MDPW~



. Now ww caa establiah the rwult about the performance guarantee of the heuristic:

Proofi See the appendix. O

The teclniquea in the heuristic for MDP_ can be UA to obtain a heuristic for an extended

version of the problem, where we are given additional weights on the nod~ on the graph

G, representing construction cats of a facility at a specific node. The budget-constraint

here is that the total mumof the cmstmction costs of the edges plus the sum of the cost of

the nod- should not excwed a given budget 0. We formalize the problem in the following

definition:

Definition s.9 (MDP- with Node Weights (MDP~))

&.P!& An undirrxkd cwnplctc gruph G’= (V, E.), two edge+might jimction 6,, 6d : E= ~

Q+, a n~~ =tit hn~t~n w: v ~ Q+, an intwr 25 p S n and a numbm fl E Q+.

output: A set P q V, 1PI = p minimizing tic ohjectiuc

D&(P) = pwl 6~(u, w)
W+w

To obtain an approximate solution for M DP~, we transform a given instance / of MDFIg~
into a suitable instanw II’of MDPmm according to the following

Lemma 3.10 Given any instanm / OJ MDP,A, -7’/, wc can constrimt an itudanm f’ of

MDP,.m - T1 in Polpomiai tinm with thr following propcrtp: Given a placemr.nt for thr in-

stance 1’ with dianactcr D and cods C, thr ~amc placement h~ diarnetcr D and costs C
with rwpfrt to the instance 1.

Proof: C;iven the instance f we defk an instance 1’ of MDPm.,-T1 as follow~. We let

G“ = G, 6: := &, # := p and define the distance function b: : E + Q+ by

6;(U, w) := &(u, w)+ +) +~(w)).



.

It is easy to check that the triangle inequality is satishd for J:. Morcxwer, by a etraigbtfor- o “

ward calculation, for any pkcmm?nt P of p nod-

n

Thus using the heuristic for MDPm~ for the instance 1’ we can immediately ohtah a (2, 2 –

2/p)-approximation for MDP~. This reeults in the following

Theorem S.11 LA 1 Anote any instance oj MDF~ -Tf and uup~se F & an optimal
plam.mcni of diameter OPT(/) = Dt~(P”). Then there is a polynomial time a.fgotim that

mturn.s a plaeemmd P of total weight no more than (2-2/p)fl and diameter DSd(l)/OPT( /) <

2.

III the special case that /Jr(e) = O for all e E E,, i.e. that there are only costs involved with

the nod= of the network G’, the last result can be improved substantially. In fact, we will

now present an eaay heuristic with a (2, 1)-performance guarantee, i.e. a heuristic which will

noi violate the budget constraint on the costs of the nodes in the placement.

Lemma 3.12 Assume I is an instance O~MDPA -T1 and ihc tcud procdum d*t+L’i, h fl, u)

reiunw a “ccrtificatr of fadurr”, tlmn WChauc OPT(I) > 6~(Ci).

Proofi Straightforward. 0

Theorem 9.13 Let 1 denote ang instanm of MDPd, -T1 and suppom P“ is an optimal

placmncnt of diamrtcr OPT(1) = Dsd( P* ). Then tic gcncnc 6ottlcncck promdurc Heur-

Generic with the trstpmmdum nod~test rrturna a placement P oj weight no mom than 0

and dimnctcr Dsd( 1)/OPT( ~) <2.

Proofi Straightforward. 0

4 Extensions to the Diameter-constrained Sum of Weights

in this mc.tion we will show briefly, how the techniques in the heuristic for MDPk~~can Iw

USA to obtain an approximation for the case, when the objective is of mm-type.
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PROCEDURE nodtiut(G, 6, fl,w)

1 V=~:={v~G: deg(v)>p-l}

2 IF Vm~ = 9 THEN RETURN “certificated failure”

31A best:=+ai

4 IA &~ := 0

(a) Let N(u) be the set of p -1 lighted neighbors of u

(b) Let ~(v) := N(u) U {v}

(c) IF w(P(u)) g 0 AND ~6(P(v)) < heat THEN I&t := P(v)
k?at := z)#(P(u))

6 IF &ai = +aI TtIEN RETUHN “certificate of failmn

ELSE RHURN h,c

Figure 4: Test Prcmdure USA for Heur-MDP+



Here it MXXJMadequate to interpret the problem in the following sense. Given a bound O on “ ●

the communication diameter of the placement, minimize the construction cost. We formalize

this problem:

De9nition 4.1 (MAP with Bottleneck Constraints (MAPti))

Input: An undirected complete gmph G = (V, EC) with two nonnegative weight junctions
6,, & : E. d Q+, an intrgcr 2 ~ p s n and a number ~ E Q+.

Output: A set P’~ V, IPI = p minimizing tk obje.ctim

S~=(P) = ~ 6.(Ui,uj)

~ubjcct to tic ronstruint

We can use the proof for proposition 3.2, which in fact did not use any arguments involvecl

with the objective function, to obtain the foHowing hardness result for MAPklt:

Proposition 4.2 (JnlcM P = NF, for ang @cd e >0 and c’ >0, them can bc no polyno-

mial time algorithm for MA I’ktt - T/ that is required to place at least *,7 facilititw and

that pmvidcs a pcrjorrnancc guamntm of (cr, 2- c).

We now consider the heuristic Heur-MDP-MAPkl~ from Figure 1, which 1]ss already been

used for M~FJk~~, but this time called with A46~ = Ssd inStead of Vbd. Then we have

Theorem 4,3 Let I bc any instance of of hfAF’bott-Tl such that an optimal solution P“ of

diamctm OPT(l) = Ds,(P”) czists. Then the algorithm Heur-MDP-MAPkc~, called with

MbC := &,, returns a placcmmd P satisfying Z%d(P)/OPT(l) ~ (2 – 2/p) and D&( f’) <2.

Proofi Use the argumentb from tbe proof of theorem 3.4 to obtain the fact that the colI-

Mtraint ~bd(}’) ~ ~ is viohbted by a fa(;t~r of at most ~.

ThtvI use the techniques in the proof of theorem 3,8 to prove the performance guarant- of

(2 - 2/p) with respect to the Rum of tlw construction rusts. ❑
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Appendix: Some Proof&
.

.*
Proof of Proposition &2:

M 1’ be an arbitrary instance of MAX–CLIQUE, given by a graph & = (V’, E). Without

lCEMof @?nerality we can fmsume that E’ # 0.

For each 2< k ~ IVI we construct an instance J@J of M~Ph,-T1 in the following way:

We let @k) = (V’, f?.) (Ec = {(u,u) : U,U E V,u # v}) and d~ne @J,J$’) : & + N by

$qr) :=lforaUe~lZC and

~~)(e):=
{

1 ife~l?

2 else

It is trivial to see that both weight functions obey the triangle inequality. We let fl@; := 1

am! p(k):= k. Notice that the size of an instamx l@) is still polynomial in the size of 1’, and
that we have constructed only polyuomially many (namely O(lV’1)) instances.

Now consider an instance J(k).

Note that any placement P of p(k) = k uod= that has communication diameter DbL(P) ~

(2-&)fl = (2–s) must have diameter 1. Also, any subset ,$ q V having diameter 2),2(,$]= 1

must form a clique in the original graph G“.

Assume that the Oiiginal graph (7 has a clique C of size p(~) = k. Then this clique will

satisfy Q~(C) = D6~(C) = 1 = W. By our =sumptiou, the algorithm A must return a set

,$’of at h?ast *, nodes with communication diameter at most (2 - f)~ = (2 -E) <2.

Thus, ss noted above, the algorithm will have to find a placement of diameter 1, and this

set will form a clique in the original graph (1’.

If there is no clique of size p(k) = k in G“, any placement P of p(k) = k nodes in G“ will

have to include at least one edge e of length J:(c) = 2> (2 – s). Now, according to our

assumptions about A, the algorithm has the choice of either returning a set of size at least

* that will form a clique in the original graph or providing the information that there

is no placement P of diameter at most Q = 1.

Thus, the output of the algorithm A can be used to either obtain the information that (i’

does not contain a clique of size p(k) = k or that W doa have a clique of size at least ~.

Now, wc can run A for all the instances l(k) (2 < k < IVi). Since the size of each instance 1(~1

is polynomial in the size of I’ and we only have 0( IVl) ir,dances, this will result in an over-

all polynomial time algorithm, according to our assumptions about, A. Let m := max{ k : A

returns a set ,S of diameter 1}, Then, by our observations from above, we can conclude

that L“ has a clique of size at least * and that there is no clique of size m + I in

G“. Hence, we can approximate the maximum clique number of C’ by a factor of at must
~ . lV1l/b-c’ ~ ,V,l/6-C’. By the results in [BS94] this will imply that T = ~7J. •1



.

Proof of Theorem 3.4:

If there is an optimal solution F that does involve a communication diameter Dbd(p) of

no more than 0, then by definition this plammen: does form a clique of size p in G’ :=

bottleneck(G, Jd, fl). The in this case V~~ is nou-mpty and the heuristic witi not output

a ‘certificate of failu.ren.

Moreover, any placemeut P(v) cxmsiderrd by the heuristic will form a clique in (LW)2. By

definition of G“ as the bot.t!eneck graph with respect to t$~and the bound 0, it follows

by the triangle il quality that no edge e in (Gwja hcs weight 6d(e) more than 2fl. Thus

every placement P(u) considered by the heuristic has cmnmunication diameter of at most

Z$d(p(u)) of no more than 20.

I..& u c P be arbitrary. Then we clearly have u E V=~. Consider tbe step, when the

heuristic considers v. For any w E N(u) we have J.(v, w) ~ OPT(1), by definition of N(v)

as the set of nearest neighbors of u MM!by the fact that every node from tbe optimal solution is

adjammt to u in G“. Thus for w, w’ E N(u) we have 6.(w, w’)< 4.(u, W)+6C(V, w’) < 20 PT(I)

by the triangle inequality. Consequently, ZlbC(P(v)) = D$=(N(u) U {u}) < 201’T(I).

Now, as the algorithm choowx the placement with minimal diameter among all the place-

ments produced, the claimed performance guarantee with respect to the mat diameter ~Ac

follows. ❑

Proof of Proposition 3.6:

We show that an algorithm A with the performance guarantee mentioned in the proposition

can be used to decide an arbitrary instance I of CLIQUE, given by a graph 6’ = (V, E) and

an integer 1 < p < n.

We define the graph in instauce 1’ of MDP_,,L-T1 by G’ = (V, EC), set W := p(p -1 ) aud

define the weight functions via b:(e) := 1 for all e E J%and

{
JJ(c):= 1 ,ife~~

2 , else.

It is now easy to see that there is a placement P satisfying &:(P) ~ Q’ if and only if the

original graph G’ baa a clique of size p.

If we do not require the distances to obey the triangle inequality, we can simply replace the

2 from above by a suitable large constant A9 and the desired result follows. 0

Proof of Theorem 3.8:

Consider the case when 6~(ei) = OPT(1). Since in (li we have deleted only edges r. having



●

weight $~(e) > 0~(1) and we assume that there is a feasible solution within our bud@- ● ‘

constraints, it follows that the bottleneck graph Gi must contain a clique C of rn~ p such

that StC(C) < fl.

For a node u G c let

Then we have

St=(c) = ~ s“.
*C

Now let u E C be so that S. is minimal among all nodes in C. Then clearly

St=(c) ~ ps.. (2)

By definition of the bottl( nexk graph Gi and the clique C, the node u mvst have degree at

least p -1 in Gi. Thus u is one of the nodes considered by the test procedure. k Af(v) be

tbe set of p – 1 nexweat neighbors of u in Gi. Then we have

by definition of iV(v) as the set of nearest neighbors, P(v) := N(v) U {u}. Let w G N(v) be.

arbitrary. Then

E 6=(W, u) = J.(W, v) + ~ 6.(W,U)
uE/v(u)u{u}\{w) uEN(u)\{w)

< J..(w,v) + ~ (6,(W,V) + 6C(IJ,U))
uEN(u)\(w}

= (p – l)&(w, v) + ~ 6C(V,U)
uEN(u)\{w)

= (p - 2)&(v, w) + ~ Ac(v, u)
UGIV(V)

(3)

s (p – Z)fi.(v, w) + s“ (4)
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NOWusing [4) md again (3), we obtain

s&(P(v)) = s#qv) U {v})

Thus the placement P(v) violates the budg~t-consttint by a factor of at most 2- 2/p.
Gwequently, as the algorithm CII- the placement with J& with the least constraint-
violath, it follows that tbe -t-ptim ca!ki with Ci = lwttlenA(G, d~,OPT( /)) will

not return a %mrtificate of failure”.

The placement & that is produced by the algorithm turns into a cIique in L?. llms the

longest edge in the placement with respect to&is at nwst 20PT(1). Q


